返回学校首页

委员风采

当前位置:首页 / 委员风采

牛耀龄

发布时间:2021-09-01       阅读:22

牛耀龄-竖

牛耀龄,男,博士,教授,博士生导师。1992年至今在国内外大学从事教学和科研工作。

一、工作经历

·         兰州大学;地质系;助教; 1982年1月 / 1985年12月

·         美国哥伦比亚大学;Lamont研究所; 博士后研究; 1992年9月/1993年7月

·         澳大利亚昆士兰大学;地球科学系;讲师、高级讲师;1993年7月/ 2000年12月

·         英国Cardiff大学;NERC高级研究员;2001年1月/2002年12月

·         美国休斯敦大学;地球科学系;副教授;2003年1月/2004年12月

·         英国Durham大学;地球科学系;地球科学教授;2004年12月至今

二、教育经历

·         学士; 地质学; 兰州大学; 1978年3月 / 1982年1月

·         硕士; 矿床地质学;美国Alabama大学;1986年1月/1987年12月

·         博士; 海洋地质月地球物理;美国夏威夷大学;1989年1月 / 1992年5月

三、获奖情况

·         1878-1981年:连续3年兰州大学三好学生

·         1991年:Watumull Award 优秀研究生杰出科研奖

·         1992年:同时获得美国Woods Hole 海洋研究所(婉拒),Scripps 海洋研究所(婉拒),Lamont海洋研究所(接受)博士后基金

·         1996年:法国海洋研究所(IFREMER)Fellow

·         2001-2005;英国自然科学基金高级研究员;Cardiff 大学

·         2002年:国家自然科学基金海外杰出青年奖

·         2006年;美国地质学会Fellow

·         2008年:英国(London)地质学会Fellow

·         2009年:英国Leverhulme Research Fellow

·         2009年:Durham大学高级研究所Christopherson/Knott Fellow

·         2010年至今:国家特聘专家;兰州大学(2010-2013),中科院海洋所(2013-2017),中国地质大学(北京)(2018年至今)

·         2019:美国地球物理联合会Fellow

四、主持科研项目

· 1. 1992年-2009年:美国NSF、澳大利亚ARC、英国NERC、英国皇家学会、英国Leverhulme基金会多项基金,注意研究方向内容:大洋岩石圈的岩石学、地球化学及板块构造

· 2021-2013;底部加水弱化导致华北克拉通破坏"的岩石地球化学验证,国家自然科学基金委重点项目(主持,结题)

· 2011-2015;大陆碰撞带为陆壳增长主要场所"的岩石地球化学验证,国家自然科学基金委重点项目(主持,结题)

· 2015-2017:青岛海洋科学与技术国家实验室鳌山科技创新计划项目(主持、结题)

· 2016-2020:海洋地质过程与环境,国家基金委-山东省联合基金项目(主持课题3,结题)

· 2017-2021:用非传统稳定同位素探索全球大洋玄武岩、深海橄榄岩成因和地球动力学的几个重要问题(主持,在研)

· 2020-2024:西太平洋岛弧基底属性研究(主持,在研)

五、代表性学术成果

1.       1. Niu, Y., Batiza, R., 1991. An empirical method for calculating melt compositions produced beneath mid-ocean ridges: Application for axis and off-axis (seamounts) melting. J. Geophys. Res. 96, 21753-21777.

2.       Batiza, R., Niu, Y., 1992. Petrology and magma chamber processes at the East Pacific Rise ~ 9°30'N. J. Geophys. Res.  97, 6779-6797.

3.       Niu, Y., Batiza, R., 1993. Chemical variation trends at fast and slow spreading ridges. J. Geophys. Res.  98, 7887-7902.

4.       Niu, Y., Batiza, R., 1994. Magmatic processes at the Mid-Atlantic ridge ~ 26°S. J. Geophys. Res.  99, 19719-19740.

5.       Batiza, R., Niu, Y., Karsten, J.K., Boger, W. and others, 1996. Steady and non-steady state magma chambers below the East Pacific Rise. Geophys. Res. Lett. 23, 221-224.

6.       Niu, Y., Waggoner, G., Sinton, J.M., Mahoney, J.J., 1996. Mantle source heterogeneity and melting processes beneath seafloor spreading centers: The East Pacific Rise 18° - 19°S. J. Geophys. Res. 101, 27711-27733.

7.       Niu, Y., 1997. Mantle melting and melt extraction processes beneath ocean ridges: Evidence from abyssal peridotites. J. Petrol. 38, 1047-1074.

8.       Niu, Y., Hékinian, R., 1997. Basaltic liquids and harzburgitic residues in the Garrett Transform: A case study at fast-spreading ridges. Earth Planet. Sci. Lett. 146, 243-258.

9.       Niu, Y., Hékinian, R., 1997. Spreading rate dependence of the extent of mantle melting beneath ocean ridges. Nature 385, 326-329.

10.    Niu, Y., Langmuir, C.H., Kinzler, R.J., 1997. The origin of abyssal peridotites: A new perspective. Earth Planet. Sci. Lett. 152, 251-265.

11.    Niu, Y., Batiza, R., 1997. Trace element evidence from seamounts for recycled oceanic crust in the eastern equatorial Pacific mantle. Earth Planet. Sci. Lett. 148, 471-484.

12.    Niu, Y., Collerson, K.D., Batiza, R., Wendt, J.I., Regelous, M., 1999. The origin of E-type MORB at ridges far from mantle plumes: The East Pacific Rise at 11°20’N. J. Geophys. Res. 104, 7067-7087.

13.    Regelous, M., Niu, Y., Wendt, J.I., Batiza, R., Greig, A., Collerson, K.D., 1999. An 800 Ka record of the geochemistry of magmatism on the East Pacific Rise at 10°30'N: Insights into magma chamber processes beneath a fast-spreading ocean ridge. Earth Planet. Sci. Lett. 168, 45-63.

14.    Wendt, J.I., Regelous, M., Niu, Y.L., Hékinian, R., Collerson, K.D., 1999. Geochemistry of lavas from the Garrett Transform Fault: insights into mantle heterogeneity beneath the eastern Pacific. Earth Planet Sci. Lett. 173, 271-284.

15.    Niu, Y., Bideau, D., Hékinian, R., Batiza, R., 2001. Mantle compositional control on the extent of melting, crust production, gravity anomaly, ridge morphology, and ridge segmentation: a case study at the Mid-Atlantic Ridge 33 - 35°N. Earth Planet. Sci. Lett. 186, 383-399.

16.    Zou, H., Zindler, A., Niu, Y., 2002. Constraints on melt movement beneath the East Pacific Rise from 230Th-238U disequilibrium, Science 295, 107-110.

17.    Niu, Y., Regelous, M., Wendt, J.I., Batiza, R., O’Hara, M.J., 2002. Geochemistry of near-EPR seamounts: Importance of source vs. process and the origin of enriched mantle component. Earth Planet. Sci. Lett. 199, 327-345.

18.    Niu, Y., Gilmore, T., Mackie, S., Greig, A., Bach, B., 2002. Mineral chemistry, whole-rock compositions and petrogenesis of ODP Leg 176 gabbros: Data and discussion, Proc. Ocean Drill. Progr. Sci. Results 176, 1–60.

19.    Niu, Y., O’Hara, M.J., 2003. The origin of ocean island basalts (OIB): A new perspective from petrology, geochemistry and mineral physics considerations. J. Geophys. Res. 108, 19pp (pages ECV 5-1 to 5-19) doi: 10.1029/2002JB002048.

20.    Niu, Y., O’Hara, M.J., Pearce, J.A., 2003. Initiation of subduction zones as a consequence of lateral compositional buoyancy contrast within the lithosphere: A petrologic perspective. J. Petrol. 44, 851-866.

21.    Niu, Y., 2004. The origin of the 43 Ma bend along the Hawaii-Emperor seamount chain: Problem and solution (Chapter 4), in Oceanic Hotspots, pp. 121-133, Springer-Verlag, New York, USA (ISBN: 3-540-40859-2)

22.    Niu, Y., Hékinian, R., 2004. Ridge suction drives plume-ridge interactions (Chapter 9), in Oceanic Hotspots, pp. 257-279., Springer-Verlag, New York, USA (ISBN: 3-540-40859-2)

23.    Niu, Y., 2004. Bulk-rock major and trace element compositions of abyssal peridotites: Implications for mantle melting, melt extraction and post-melting processes beneath ocean ridges. J. Petrol. 45, 2423-2458.

24.    Niu, Y., O’Hara, M.J., 2008. Global correlations of ocean ridge basalt chemistry with axial depth: A new perspective. J. Petrol. 49, 633-664.

25.    Mo, X.X., Niu, Y., Dong, G.C., Zhao, Z.D. and others, 2008. Contribution of syncollisional felsic magmatism to continental crust growth: A case study of the Palaeogene Linzizong volcanic succession in southern Tibet. Chem. Geol. 250, 49-67.

26.    Niu, Y., 2008. The origin of alkaline lavas. Science 320, 883-884.

27.    Song, S.G., Su, L., Niu, Y., Lai, Y., Zhang, L.F., 2009. CH4 inclusions in orogenic harzburgite: Evidence for reduced slab fluids and implication for redox melting in mantle wedge. Geochim. Cosmochim. Acta 73, 1737-1754.

28.    Niu, Y., O’Hara, M.J., 2009. MORB mantle hosts the missing Eu (Sr, Nb, Ta and Ti) in the continental crust: New perspectives on crustal growth, crust-mantle differentiation and chemical structure of oceanic upper mantle. Lithos 112, 1-17.

29.    Humphreys, E.R., Niu, Y., 2009. On the composition of ocean island basalts (OIB): The effects of lithospheric thickness variation and mantle metasomatism. Lithos 112, 190-212.

30.    Niu, Y., Wilson, M., Humphreys, E.R., O’Hara, M.J., 2011. The origin of intra-plate ocean island basalts (OIB): The lid effect and its geodynamic implications. J. Petrol. 52, 1443-1468.

31.    Niu, Y., 2012, Earth processes cause Zr-Hf and Nb-Ta fractionations, but why and how? RSC Advances 2, 3587-3591.

32.    Xiao, Y.Y., Lavis, S., Niu, Y., Pearce, J.A. and others, 2012. Trace elements transport during subduction zone metamorphism: Evidence from ultrahigh pressure metamorphic rocks, Western Tianshan, China. Geol. Soc. Amer. Bull. 124, 1113-1129.

33.    Niu, Y., Zhao, Z.D., Zhu, D.C., Mo, X.X., 2013. Continental collision zones are primary sites for net continental crust growth – A testable hypothesis. Earth-Sci. Rev. 127, 96-110.

34.    Huang, H., Niu, Y., Nowell, G., Zhao, Z.D. and others, 2014. Geochemical constraints on the petrogenesis of granitoids in the East Kunlun Orogenic belt, northern Tibetan Plateau: Implications for continental crust growth through syn-collisional felsic magmatism. Chem. Geol. 370, 1-18.

35.    Niu, Y., 2014. Geological understanding of plate tectonics: Basic concepts, illustrations, examples and new perspectives. Global Tectonic. Metallogeny. 10, 23-46.

36.    Shao, F.L., Niu, Y., Regelous, M., Zhu, D.C., 2015. Petrogenesis of peralkaline rhyolites in an intra-plate setting: Glass House Mountains, Southeast Queensland, Australia. Lithos 216/217, 196-210.

37.    O'Hara, M.J., Niu, Y., 2015. Obvious problems in lunar petrogenesis and new perspectives, In The Interdisciplinary Earth: A Volume in Honor of Don L. Anderson, Geol. Soc. Amer. Spec. Paper 514 & Amer. Geophys. Uni. Spec. Publ. 71, p. 339-336.

38.    Niu, Y., Liu, Y., Xue, Q.Q., Shao, F.L. and others., 2015. Exotic origin of the Chinese continental shelf — New insights into the tectonic evolution of the western Pacific and eastern China since the Mesozoic. Sci. Bull. 61, 1598-1616.

39.    Niu, Y., O'Hara, M.J., 2016. Is lunar magma ocean (LMO) gone with the wind? Nat. Sci. Rev. 3, 12-15.

40.    Niu, Y., Tang, J., 2016. Origin of the Yellow Sea: An insight. Sci. Bull. 61, 1076-1080.

41.    Niu, Y., 2016. Testing the geologically testable hypothesis on subduction initiation. Sci. Bull. 61, 1231-1235.

42.    Zhang, Y., Meng, F.X., Niu, Y.L., 2016. Hf isotope systematics of seamounts near the East Pacific Rise (EPR) and geodynamic implications. Lithos 262, 107-119.

43.    Hu, Y., Niu, Y., Li, J.Y., Ye, L., Kong, J.J., Chen, S., Zhang, Y., Zhang, G.R., 2016.  Petrogenesis and tectonic significance of the Late Triassic mafic dikes and felsic volcanic rocks in the East Kunlun Orogenic Belt, Northern Tibet Plateau. Lithos 245, 205-222.

44.    Niu, Y., 2016. The meaning of global ocean ridge basalt major element compositions. J. Petrol. 57, 2081-2104.

45.    Niu, Y., Shi, X.F., Li, T.G., Wu, S.G. and others, 2017. Testing the mantle plume hypothesis: An IODP effort to drill into the Kamchatka-Okhotsk Sea system. Sci. Bull. 62, 1464-1472.

46.    Niu, Y., 2017. Slab breakoff: A causal mechanism or pure convenience? Sci. Bull. 62, 456-461.

47.    Niu, Y., 2018. Origin of the LLSVPs at the base of the mantle as a consequence of plate tectonics - A petrological and geochemical perspective. Geosci. Front. 9, 1265-1278.

48.    Niu, Y., Green, D.H., 2018. The petrological control on the lithosphere-asthenosphere boundary (LAB) beneath ocean basins. Earth-Sci. Rev. 185, 301-307.

49.    Hong, D., Niu, Y., Xiao, Y.Y., Sun, P. and others, 2018. Origin of the Jurassic-Cretaceous intraplate granitoids in Eastern China as a consequence of paleo-Pacific plate subduction. Lithos 322, 405-419.

50.    Chen, Y.H., Niu, Y., Wang, X.H., Gong, H.M., Guo, P.Y., Gao, Y.J., Shen, F.Y., 2019. Petrogenesis of ODP Hole 735B (Leg 176) oceanic plagiogranite: Partial melting of gabbros or advanced extent of fractional crystallization? Geochem. Geophys. Geosys. 20, 2717-2732.

51.    Chen, S., Niu, Y., Guo, P.Y., Gong, H.M., Sun, P., Xue, Q.Q., Duan, M., Wang, X.H., 2019. Iron isotope fractionation during mid-ocean ridge basalt (MORB) evolution: Evidence from lavas on the East Pacific Rise at 10°30’N and its implications. Geochim. Cosmochim. Acta 267, 227-239.

52.    Guo, P.Y., Niu, Y., Sun, P., Gong, H.M., Wang, X.H., 2020. Lithosphere thickness controls the continental basalt compositions: An illustration using the Cenozoic basalts from eastern China. Geology 48, 128-133.

53.    Huang, H., Niu, Y.L., Teng, F.Z., Wang, S.J., 2019. Discrepancy between bulk-rock and zircon Hf isotopes accompanying Nd-Hf isotope decoupling. Geochim. Cosmochim. Acta 259, 17-36.

54.    Niu, Y., 2020. On the cause of continental breakup: A simple analysis in terms of driving mechanisms of plate tectonics and mantle plumes. J. Asian Earth Sci. 194, 104367.

55.    Niu, Y., 2020. What drives the continued India-Asia convergence since the collision at 55 Ma? Sci. Bull. 65, 169-172.

56.    Sun, P., Niu, Y., Guo, P.Y., Duan, M., Wang, X.H., Gong, H.M., Xiao, Y.Y., 2020. The lithospheric thickness control on the compositional variation of continental intraplate basalts: A demonstration using the Cenozoic basalts and clinopyroxene megacrysts from eastern China. J. Geophys. Res. 125, e2019JB019315.

57.    Sun, P., Niu, Y., Guo, P.Y., Duan, M., Chen, S., Gong, H.M., Wang, X.H., Xiao, Y.Y., 2020. Large iron isotope variation in the eastern Pacific mantle as a consequence of ancient low-degree melt metasomatism.  Geochim. Cosmochim. Acta 286, 269-288.

58.    Xiao, Y.Y., Chen, S., Niu, Y., Wang, X.H., Xue, Q.Q., Wang, G.D., Gao, Y.J., Gong, H.M., Kong, J.J., Shao, F.L., Sun, P., Duan, M., Hong, D., Wang, D., 2020. Mineral compositions of syn-collisional granitoids and their implications for the formation of juvenile continental crust and adakitic magmatism. J. Petrol. 61, 1-19.

59.    Sun, P., Niu, Y.L., Guo, P.Y., Duan, M., Chen, S., Gong, H.M., Wang, X.H., Xiao, Y.Y., 2020. Large iron isotope variation in the eastern Pacific mantle as a consequence of ancient low-degree melt metasomatism.  Geochim. Cosmochim. Acta 286, 269-288.

60.    Chen, Y.H., Niu, Y., Duan, M., Gong, H.M., Guo, P.Y., 2021. Fractional crystallization causes iron isotope contrast between mid-ocean ridge basalts and abyssal peridotites. Comm. Earth & Environ 2, Article number 65.

61.    Niu, Y., 2021. Lithosphere thickness controls the extent of mantle melting, depth of melt extraction and basalt compositions in all tectonic settings on Earth – A review and new perspectives. Earth-Sci. Rev. 217, 103614.

62.    Xue, S., Niu, Y.L., Chen, Y.H., Shi, Y.N., Xia, B.Y., Wang, ,P.Y., Gong, H.M., Wang, X.H., Duan, M., 2021. Iron isotope fractionation during skarn Cu-Fe mineralization. Minerals 11, 444.

63.    Wang, P.Y., Niu, Y.L., Sun, P., Wang, X.H., Guo, P.Y., Gong, H.M., Duan, M., Shen, F.Y., Shi, Y.N., Chen, Y.H., Shan, L., 2021. Iron isotope compositions of coexisting sulfide and silicate minerals in Sudbury-type ores from the Jinchuan Ni-Cu- sulfide deposit: A perspective on possible core-mantle iron isotope fractionation. Minerals 11, 464.

64.    Sun, P., Guo, P.Y., Niu, Y., 2021. Eastern China continental lithosphere thinning is a consequence of paleo-Pacific subduction: A review and new perspectives. Earth-Sci. Rev. 218, 103680.

65.    Guo, P.Y., Niu, Y., Sun, P., Zhang, J.J., Chen, S., Duan, M., Gong, H.M., Wang, X.H., 2021. The nature and origin of upper mantle heterogeneity beneath the Mid-Atlantic Ridge 33-35°N: A Sr-Nd-Hf isotopic perspective. Geochim. Cosmochim. Acta 307, 72-85.

66.    Shao, F.L., Niu, Y.L., Kong, J.J., Liu, Y., Wang, G.D., Zhang, Y., 2021. Petrogenesis and tectonic implications of the Triassic rhyolites in the East Kunlun orogenic belt. Geocsc. Front. 12, 101234.

67.    Chen, Y.H., Niu, Y.L., Xue, Q.Q., Gao, Y.J., Castillo, P.R, 2021. An iron isotope perspective on back-arc basin development: Messages from Mariana Trough basalts. Earth Planet. Sci. Lett. 572, 117133.

68.    Duan, M., Niu, Y.L., Sun, P., Chen, S., Kong, J.J., Li, J.Y., Zhang, Y., Hu, Y., Shao, F.L., 2021. A simple and robust method for calculating temperatures of granitoid magmas. Mineral. Petrol. vvv, ppp-ppp.

 

六、招生方向

· 1. 岩石学(岩浆岩、变质岩)

· 2. 地球化学(元素及同位素地球化学)

· 3. 大洋岩石学、地球化学及全球构造

七、联系方式

· 办公室:逸夫楼 724

· 电  话:15853252377

· E-mail: yaolingniu@cugb.edu.cn